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ABSTRACT

The main result of this paper is summarized in Theorem 1, which states

that when certain conditions of a general nature are satisfied, the data-

based histogram density estimator is strongly consistent in the sense that

the mean absolute deviation of the estimator and the density function con-

verges to zero almost surely for any density function, as the sample size

increases to infinity.
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1. INTRODUCTION AND MAIN RESULTS

Suppose that X is a one-dimensional random variables with distribution

F and density f. Let X,...,9Xn be i.i.d. observations of X. It is desired

to estimate f(x) by these samples. For this purpose we introduce a parti-

tion of Rl =

R I U" I Ci ;Xl, ... ,X n), (I)
i=l

where I(i;X ,... ,X n ), i=l,2,... are intervals with lengths greater than

zero, and I(i;XI,...,Xn) n I(j;X,...SX n ) = 0 for i 0 j. Write

Kn = Kn(XS...,Xn) = {I(i;X9.6."Xn ): i = 1,2,...},

In x) = The interval I(i;Xl ,...,Xn) containing x,

Pn (x) = #(fi:l<i<n, X i e I n(x)}), where #(A) denotes the number

of elements belonging to A,

and define an estimate of f(x) as follows:

f n(x) = fn (x;X ,...,X n) = Pn(x)/(nJIn(x)l). (2)

Here and in the following we write JAI for the Lebesgue measure of the set
A c, 1 . fn(x) is the so-called data-based histogram estimate based on the

n

partition Kn . "Data-based" means that Kn depends on the sample Xl , . . . DXn ,

while in the ordinary histogram estimate, the partition is predetermined

before the samples were drawn.

Write An = An(Xl,...,Xn) for the Ll-norm of fn:

An = f6o I fn(X) - f(x)Idx I Jn - fjdx. (3)

A number of papers appeared dealing with the weak (i.e. in probability)

convergence of An to zero. Among these we mention the recent paper [2] by

J. Chen and H. Rubin, in which they prove that A -P 0 under quite general

. .. - . . . - . .. . . . -. . . . . . . ... . . . . , . . . . . . , ... ,. . . . . .. . . . . . . . . . ... . . . . ; :. . 1
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conditions imposed on K n . In the present article we deal with the problem

of a.s. convergence. Specifically speaking, we prove the following theorem.

Theorem 1. Suppose that Kn satisfies the following two conditions:

I. limIIn(X)I = 0, a.s. for x e R a.e.L. (4)

2. Denote by Cnt the number of intervals in K having at least one
nt n

common point with [-t,t], we have for any fixed t > 0,

Cnt = o(n/log n), a.s. (5)

Then, for the estimator fn defined by (2) it is true that

lim A = 0, a.s. (6)n

where An is the Li-norm of f n defined by (3).

Essentially speaking, Chen and Rubin proved that 0 under ourn

condition 1 and Cnt = O p(n), and another condition with a more complicated

nature. In order to prove (6) we pay a price that the condition Cnt = O p(n)

is strengthend to (5). It is easy to show by an example that (5) cannot be

replaced by C = O p(n/log n). Judging from the known results in density

estimation, it seems doubtful that the condition (5) can be substaintially

improved.

We also remark that Y. S. Chow and others [3] gave a result concerning

the truth of (6), where Kn has a form Kn = {(i/x n,(i+l)/X n , i = 0,+I,+2,...},

X - X (Xl...SXn) is determined by the sample in a way described in [3],

but the condition imposed on f is rather stringent.

Chen and Rubin also considered in [2] the case that X is multidimension-

al, again for weak convergence. For the problem of strong convergence, Wang

• - , * . • . ... . ..
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and Chen [8] obtained some results which are of more complicated form.

Recently, we improved these results and obtain a simple one which includes

the above one-dimensional result as a special case.

In this paper we give a proof in detail for one-dimensional case only.

In Section 2 we introduce a lemma which is needed in the sequel. The proof

of the main result is given in Section 2. In Section 3 we discuss a general-

ization to the multidimensional case.

A N
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2. A LEMMA

The proof of Theorem 1 depends on a lemma which is proved in this

section. The lemma has independent interest, and may be useful in some

related problems.

Lemma 1. Suppose that XI,X 2,... is a sequence of independent one-dimen-

sional random variables, and the distribution function F of X is continuous

everywhere on R1. Denote by F nthe empirical distribution function of

{Xl...,Xn}. Then there exist absolute constants Ci > 0, i = 0,1,...,4,

such that for any e > 0 we have

P{suplF (A) - F(A)J > el
Ac F

I-+ -)exp(-C 2nE /b) + C3exp(-C 4ne), (7)

where F is a set consisting of some intervals AoC R with

sup F(A) _< b < 1
AcF

and n/log n is greater than C /C.

Proof. By a result of Koml6s, Major and Tusnady [6], we can find a suitable

probability space in which we can define an i.i.d. sequence (which for con-

venience will be denoted again by XI,...X n ) whose common distribution is

F, and a Brownian bridge B n(t), such that

P(supin(Fn (x) - F(x)) - v nBn(F(x))I > C log n + y}
x

< E exp(-Xy), (8)

where C, C and X are positive absolute constants. Put 8 n(t) = wn t) - tWn(1) ,

where Wn is a Brownian motion process, and write

"m %°- ,-~~~~~~~~~~~~~~...... ....................... ....... . . ........... ... ......2 . *.-....-...
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n(Fn (x) - F(x)) = YnBn CF(x)) + e n(x).

Then for A = :a l ,a 2 ) e F we have

Fn(A) - FCA) = n 1 /2W nCF(a2)) - WnCF(a1))]

n-/ 2 F(A)Wn CI) + n 1 [en(a 2 ) - en(al)]O (g)

From (8), when ne/ 6 > 2C log n we have

Psup lien(a2 ) - en(al)I > e/3}

< P{suplen(X >__ ne/ 6} < C exp(-XnE/12). (10)
x

Further,

P(sup n'1 /2 F(A)IWn(1)1 > £/3)
AeF

" P(Wn (1)I >PVl(3b))

" 6b exp(-n,2 < 6.__ _ 2

By Lemma 1,2.1 in f4l and sup F(A) < b,
AeF

P{sup n-1 /2W n(F(a 2 )) - Wn (F(aI))I I.P/3}
AeF

< P{ sup 1W(X 2 ) - Wn (xl)1 >r/3}
x2xl<_1b, o<x 1 <x2<l

< P{ sup sup 1Wn(s+t) - Wn (S) I >_ ( /3/)r}
o<s<2-b o<t<b

c exp(-nc 2/18b), (12)
-b

where C is a constant. The lemma now follows from (9)-(12).

- -" - ' -. 7 - ." . - -" -" *-' " - , * - . *" - .
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Remark. The lemma is an essential improvement of a similar result given

by Devroye and Wagner in [51 for the special case that F consists of one-

dinensional intervals. In their result, b is given by

II

b =sup F(A), and P' {A = a,a+h): a s Rl h =2 suprA il.

UPF ArzF
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3. PROOF OF THE THEOREM 1

First we note that it is enough to show that

-t
li2 fIf - f Idx= 0, as. for each t > 0. (13)

For if (13) has been proved, denote by Et a R0 the set on which (13) is not

true. Then P(Et) = 0. Put E = Uco Et. By an easy argument it is seen that

1 i fm If - fnIdx - 0 on R0 - E.

Next define

Qn(X) = xfu)du/[In(x) l.

In order to prove (13) it is enough to prove that

lim if - QnfdX = 0, a.s. for each t > 0, (14)

lim I
t

n iftn - Qnldx = 0, a.s. for each t > 0. (15)

By assumption 1 of Theorem 1 it is easily seen that there exists a set

A a R such that P(A) = 0 and for (Xl,X 2,..•) e A we have limIIn(X)l = 0

for x e R1  a.e.L, and in turn it follows that lim Qn (x) = f(x) for x, a.e.L.

Since Qn(x) is a density function when (X1 ,X2 ,. o) is fixed, by a well-known

theorem due to Scheffe, it follows that lim jlf - Qn dx = 0 for each fixed

(XlX 2, ...) A. Thus (14) is proved.

Now we proceed to prove (15). Denote by Anl ,'Anm those intervals
n

belonging to K n and having common points with [-t,t]. Put
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F L  i = 1,2,....

* and denote by F(b)(0 < b < 1) the set of intervals belonging to F and

satisfying F(1) < b. Thenj nni [-ttI, and by Assumption 2 of
i

Theorem 1 we have il

mn = o(n/log n), a.s. (16)

Denote by #(A) the number of elements belonging to A, and

q = #( {j: 1 < j < n, X. e Ani

Zj fA fdx. (17)
ni

Then we have

ft 
m n

t if n " Qn ldx < li=l A I n - QnIdx

n L qni - nZ ni. (18)

Given c > 0, choose M > max{64, (C0/g)3/2, ( )3/2 (-%)31, where C,

C2, C4 are the constants mentioned in Lemma 1. Divide {l,2,...,mn } into a21 4 n

number of nonintersecting sets Jol,... in the following way:

J = (i: 1 < i < ma, Z M log n/n},
0 - -n ni-<

{i: 1 < i < mn, M +r- 1 log n < Zni M + r log n}, r = 1,2

Define ai = #(ji), i 0,1,2,.... Since ffdx = 1, we have

00

ai(M + i - 1) log n/n < 1. From this and M > 1 we have
i=l
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ai(M + l)log n/n < 2. (19)
i=l

By (M + r - l)log n/n < 1, we can restrict ourselves to the cases where

r < n/log n. Thus

1 n/log n q
1 n l ni. nZ ni I =: Z q, _ Z

i=l r= 1 n Zni

r

< n/log na. sup IFn(I) - F(I)I, (20)
r=o * IfFr

where

r F('M r)log n/n), r > 0.

Write

Bo = {sup IF (I) - F(1)I > 'M log n/n

sup IF TF()I ( CM + r) log n/n}, r > 1

and
n/log n

B U B. r Using Lemma 1, we get]r=o r"

P(B log n)exp(-C 2 2M log n)0 1VM lo g +Mrog n2

+ C3 exp(- C4E. log n), (21)

and
P,1 M-1/6 n-I1/2 2l3ogn

P(Br ) < CI,- M (log n) + n/M log n)exp,-C~C2Ml/31og n)

+ C3 exp(- C4M2/3 log n), (22)

.4°

' ° " "" B, "i"= " ° a"°, °° °, 
•

' •
°

° "." • w 
" •

, 
•

• . ... ".. . . . . . . . ..... . . . . . . .•.. . ...-.. •
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which implies

P(B) < C/n
2

where C does not depend on n.

But when the event B does not happen, we have

1 V nmn I M log n +M+r)log n -1/3

i - n + 0 r>I r n

By (19) and M > 64 it follows that

p(l Imn ni  " >-" a° cI4 log n/n + e/2) < P(B) < C/n2

n i~ =1 ni -

" Hence by Borel-Cantelli's Lemma we have

In ni - nZi > aoeM log n/n + c/2 , i.o.) 0.
iP l ni

Therefore, with probability one, we can assert that

1mn 1,ni - nZniI < aocM log n/n + e/2  (23)
n i=l ni

for n sufficiently large. But by (16)

ao, mn = o(n/log n), a.s.

From this and (23), it follows that with probability one, we have

Imn In "nZni < (24)
n i=l ni ni

for n sufficiently large. Since c > 0 is arbitrarily given, (15) follows

from (18) and (24), and Theorem 1 is proved.

* * . * - . . . .. . *. .. -*

* . .. *.-** * * * * - * . . .- *
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4. MULTIDIMENSIONAL CASE

We now consider multidimensional extension of the result in Section 3.

Let us assume that X, X1, ..., Xn are i.i.d. d-dimensional random vectors,

and replace density, partition, interval in R1 and so on by the analogues
Rd patclr byadnera nR

in Rd . In particular, by an interval in R we mean a set in R having the
d

form ii Ai, where A.'s are all one-dimensional intervals. Now Cnt in (5)
i=l 1

is defined as the number of intervals in Kn having at least one common point

with the interval Vt = {(Xl,...,xd) : xii< t, i = l,...,d). Also, condi-

tion (4) is replaced by the following:

(I) lim 0(1 (x)) = 0, a.s. for x e R , a.e.L, (25)n

where D(I) denotes the diameter of set I c Rd.

For the case where d > 1, Chen and Rubin [2] proved that An--.P 0 under

(25), Cnt = OP( /n) for any t > 0, and another condition with a more compli-

cated nature. Wang and Chen [81 studied the problem of strong convergence

of An . They proved that lim An = 0, a.s. if (25) holds and one among

the following sets of conditions is satisfied:

II'. Cnt = o(n/log n), a.s. for any t > 0,

II"'. f is bounded on any bounded subset of Rd,

Cnt = o(n/log n), a.s. for any t > 0,

lim sup an (t) <, a.s. for any t > 0,

where

a n(t) = sup{D(I) : I e Kn and I (IVt  }

II''. For a > 0 large enough, the set {x : f(x) < al differs only by

a null Lebesgue measurable set from an open set,

Cnt = o(n/log n), a.s. for any t > 0,

lim a n(t) = 0, a.s. for any t > 0.

-." , ." z -" ' , - - -=• , ,- -, ' , .- - -. -....-. , .... .-.-.-...- . • .. -.-.. .-. .-.... -, ..: , ., . .. . ..
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Recently, we find an inequality by which we obtain the following.

Theorem 2. Suppose that Kn satisfies the condition (I) and

(II) Cnt = o(n/log n), a.s. for any t > 0.

Then (6) is true for the d-dimensional case.

Since the proof is parallel to that of Theorem 1, we only introduce

related inequality.

d
To this end, let Xl,...,xr be r points in R , and A be a class of Borel

d A
sets in R . Denote by A(xl ...,xr) the number of distinct sets in

{{xl,...,xr} l A, A s A). Define

mA(r) = max d AA(xl"".Xr)"
xI 9 ,...,X rr*R

Vapnik and Chervonenkis [7] showed that either m A(r) = 2r for any positive

A sAk
integer r or m (r) < r + 1, where s is the smallest k such that mA(k) 2 .

A class of sets A for which the latter case holds will be called a V-C class

with index s.

Suppose that p is a probability measure on Rd. Let XI,X2,... be a

sequence of i.i.d. random vectors with common distribution U, and U n be the

empirical distribution of X1,...,X n . Denote a "distance" between un and P

by

Dn(Au) = SuPpn(A) - u(A)I.
AeA

Here we assume that Dn (A,1 ), supipn (A) - v2n(A)l and sup un (A) are all random
AeA AeA

variables. We have the following.

Lemma 2. Let A be a V-C class with index s such that

• .' ' ." .. ," .-. . . . • . . .
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sup vi(A) < 6 < 1/8. (26)
A

Then for any e > 0 we have

P{D n(A,U) > e)< 5(2n)sexp(- ne 2/(916 + 4e)) (27)

+ 7(2n) 5exp(-6n/68)

+ 2 + +sexp(-Sn/8),

provided n > max (l2a/I 2, 68(l + s)(log 2)/6).

.5 Proof. See [9].

In the present case, we should take A as some interval class in R d

which is a V-C class obviously. Also, there is no problem with measur-

* ability mentioned above. As an alternative lemma, we can also use the

corollary 2.9 in (11.

Acknowledgement. The authors are grateful to the referee for his helpful

suggestions.
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